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Abstract—In order to calculate the raditaion from plasmas placed
in waveguides it is necessary to know the field produced by arbi-
trarily moving charged particles in a waveguide. In this paper modal
expansions for the vector and scalar potentials due to arbitrarily
moving charged particles in a waveguide are derived and provide
the extension of the Liénard-Wiechert potentials to a waveguide en-
vironment. In addition, for a plasma filled waveguide, a modal ex-
pansion is given of the electric field directly in terms of mode coupling
with the charge motion. Expressions for the spectral distribution of
the radiation are given, both in general and for cyclotron radiation.
Some specific results for the Hy, mode excited in a rectangular guide
by cyclotron motion are also presented.

I. INTRODUCTION
THE PROPERTIES of the electromagnetic radia-

tion from a plasma are of great interest because

they provide information about the physical
process going on in a plasma and also because they are
an important loss mechanism in thermonuclear ma-
chines, [1], [3]. The two most important radiation
mechanisms are electron bremsstrahlung and cyclotron
radiation. The main features of this type of radiation
may be calculated by means of classical radiation
theory. A common procedure is to first calculate the
radiation from a single particle. The radiation from the
whole plasma is then obtained by averaging the radiated
power over the velocity distribution of the electrons,
using the assumption that each electron radiates inco-
herently with respect to all of the others [4].

The radiation from a single accelerated charge in free
space is readily found from the well-known Liénard-
Wiechert potentials [5]. The radiation from a single
gyrating electron in a uniform static magnetic field may
be found by an application of these potentials [6], [7].
Although a number of analyses and calculations for
single particle radiation in free space have been carried
out, general results for arbitrarily moving charged
particles in a waveguide do not seem to have been de-
rived. The radiation from charged particles in a wave
guide is of considerable importance in connection with
the measurement of plasma radiation at microwave
frequencies. In the measurement of the plasma radiation
it is often convenient to place the plasma inside of a

Manuscript received July 10, 1964; revised January 7, 1965.
This work was supported by the Air Force Cambridge Research
Laboratories, Office of Aerospace Research, under Contract
AF 19(628)1699.

The author is with Case Iustitute of Technology, Cleveland,
Ohio.

waveguide [8], [9]. It then becomes important to know
how various types of charge motion couple to or excite
propagating modes in the waveguide.

The first part of this paper is concerned with the
modal expansion of the vector and scalar potentials
arising from a single arbitrarily moving charge in a wave-
guide. The solution presented may be regarded as an
extension of the Liénard-Wiechert potentials to a wave-
guide environment. Particular attention is focused on
the cyclotron radiation. Suitable formulas are obtained
for calculating the spectral density distribution of the
radiation when the particle undergoes periodic motion
for a finite time interval only.

The second part of the paper deals with the problem
of the radiation from a single particle in a waveguide
partially filled with a plasma medium. A formal solution
is given for the modal expansion of the electric field in
the partially filled guide In the present case the com-
plexity of the equations satisfied by the potentials is
such that it is often more convenient to work directly

with the modal expansions of the electric and magnetic
fields.

I1I. POTENTIAL EXPANSIONS FOR A SINGLE
ARBITRARILY MOVING CHARGE

In this section the modal expansions for the vector
and scalar potentials arising from a single arbitrarily
moving charge will be derived. The charged particle’s
trajectory is assumed to be unaffected by its own radia-
tion field, an assumption that holds to a high degree of
approximation except for extremely high energy parti-
cles (in case of electrons radiation damping is negligible
for energies below one beV). It is further assumed that
the particle moves in an otherwise empty waveguide.
The waveguide has an arbitrary cross section, is in-
finitely long, and is perfectly conducting

Consider a particle with charge ¢ and position vector
r'(#). The charge density p and current density J asso-
ciated with this moving charge may be expressed as

o(r, 1) = gdlr — £'()] (1a)

B dr’ , 0
J@D~q5wh—dm (Lb)

where § is the Dirac delta function. The vector potential
A and scalar potential & are solutions of
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1 8%A(z, ¢
V2A(r, t) — — —-9;—) = — poJ(z, 1) 2
c? ot
1 82®(x, ) o(r, 1)
- — . 3
V28(r, 1) R . ©))

Vector Potential Expansion

The aforementioned equations will be reduced to
standard eigenfunction-eigenvalue problems by taking
Fourier transforms with respect to time f and the wave-
guide axial coordinate z. Thus we let

Alr, @) = f " Ale, De-idt (4a)

Az, B, 0) = f A(r, w)e=dz (4b)

where r, is the x and ¥ part of r. Similar definitions are
used for the transforms of all other quantities. The
Fourier transform of (2) vields

(Vt2 + kaz)A(rh 63 w)
= — uoJ(rs, B, ©)
0 0 d ! tl
_uoqf_w ]:_m tdf, )6[I't —r/@)] - -
8[z — F () eV edBdy dz

© dr'(t
= — poq f df’ ) 8y — r/ (') |etortis='qy  (5)

where k2=ko?—f% and k?=w?/c%. The solution to (5)
will be expanded in terms of the eigenfunctions of the
equations

VIA(r:) + kFA(r) = 0
VA (rs) + ki A,(r) = 0.

(6a)
(6b)

In a gauge where the divergence is nonzero the general
solution of (6a) consists of two classes of vector eigen-
functions, namely

1) Solenoidal modes with eigenvalues /,2 which will
be designated by the symbol F,. These satisfy the
relation V,* F,=0.

2) Irrotational modes with eigenvalues k.2 which will
be denoted by the symbol G,. These satisfy the
condition V; X G, =0.

For unique solutions, and keeping in mind that the
electromagnetic fields to be derived from A must satisfy
the boundary conditions

nXE=n*H=0 on C

where C is the waveguide boundary, the following
boundary conditions are imposed:

VieG,=nXF,=0 on C. )
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Solutions for the G, are readily found in terms of scalar
function ¥,(r;) as follows:

G, = ®)
bn
where
Vv, + k20, =0 (9a)
¥,=0 on C. (9b)

These functions are readily shown to be orthogonal with
respect to integration over the guide cross section .S and
are assumed to be normalized so that for nondegenerate
eigenvalues
fGn'GmdS = f\I/n\IfmdS = Oum (10)
s 8

where 8,,=0 for nm and equals unity for n=m.
Degenerate eigenfunctions may be combined in a linear
fashion so that (10) will be valid for these as well. It is
clear that the functions G, as given satisfy the condi-
tions V:X G,=0 and V,*G,=0 on C.

Solution for the F, may be obtained in terms of scalar
functions ¢,(r:) as follows:

a; X Vt¢n

1
Fnzl_vtxaz¢n= — ] (11)
where
Vt2¢n —I_ Zn2¢n = 0 (12&)
ad,
=0 on C. (12b)
on

These functions are orthogonal and are also assumed
normalized so that

an'FmdS = f¢n¢mds = 6nm-
S 8

Clearly V;*F,=0 and nXF,=0 on C. It is assumed
that the guide cross section is simply connected so that
zero eigenvalues, i.e., k,=1,=0, are excluded.

The axial component 4, of the vector potential may
be expanded in terms of the ¥, functions which are also
the eigenfunctions of (6b).

In addition to the orthonormal properties (10) and
(13) the eigenfunction F, and G, are also mutually
orthogonal, i.e.,

(13)

an *GndS = 0, all 2 and m. (14)
s

A suitable expansion for the wvector potential
A(r;, 8, w) in (3) is

A(r, B,0) = 2 fuFu+ 2, 8.G. + 2. > a, ¥, (15)



1965

where fu, ga, and @, are expansion coefficients. When this
expansion is used in (5) and use is made of the orthog-
onality properties of the functions F,, G., and ¥,, it
is readily found that

_ e (A E) v
T — ko j; ar’ Wo[e/ () ]e-v+i=qr (16a)
_“Oq f rt/( /)
W = F,lrd (¢ e~ ot qy  (16b
fo= e W] (16b)

’(’)

e ]mt""jﬂ:/dll.

Mg 'y
g = kz—sz_f @) (160

Note that the a,, fa, and g, are functions of 8 and w.
The transform relation for a,, f», and g, in (16) may
be inverted with respect to 8 to give

1 0
D) = - f au(e, B)o#d8

R

38 (—2")
dgdr’
B

L g—dwt!
2

_ _HOQ]f [/ ()]
28, o

where (3,2 is defined by 8,2=%.*— k.2 The inversion con-
tour encircles the pole at §=4, above the axis, and the
pole at 8= —f@, below the axis. Similarly

¢l =2l g=dot g (17a)

—Jnog f ot
o, 2) = 'n d-jot'di (17b
Julw, 2) 2 J (r: (17b)
where p.2=k?— 1,2,
gnlw, 2) = jﬂogf Ga(r!)* —e‘iﬂnlz“ S=sr'dy . (17c¢)

In (17) r/ and 2’ are explicit functions of ¢’. The co-
efficients a.(w, 2), fu(w, 2), and g.(w, 2) in (17) give the
spectral distribution of the #'th mode in the expansion
of the vector potential. Note in particular that when
ko*=w?/c? is less than &,? or /,? the mode is cut off and
does not propagate.

In order to obtain the expansion of A(r, t) the ex-
pansion coefficients a.(w, 2), fu(w, 2), and g.(w, 2) as
given by (17) must be inverted with respect to w.

This requires evaluation of an integral of the form

1 ®
[=—
2uj
|2 —
exp I:jw(t—t’) —f — Phy?
¢ do.  (18a)

,\/w2 — cﬂkn‘l
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This is a standard integral occurring in waveguide
transient problems and has the value

I =TJolbuv/c2(t — 1) = G =202, t—1>|s—4|/c
=0, (18b)

where Jis the Bessel function of the first kind and order
zero. Use of this result gives

otherwise

a,(t, 2) = —f_w\I/ () ~—]o

Ak — 1) = (5 — #)dl (19a)
where r/ and 2’ are functions of ¢/, Zo=/uo/€o
ne =22 "R
-[ln\/ﬁ(t — ) — (z — &)
gty ) = f G.(rd)
Akan/E = 1) — (2 — #)?]de (19¢)
The vector potential is given by
A(r, 1) = 2 fult, )Fu(rs) + 22 ga(t, 2)Giulrs)
+ D a:a.(t, 2)Valrs). (20)

Scalar Potential Expansion

The scalar potential ®(z, t) is a solution of (3) and
must satisfy the boundary condition =0 on C. The
eigenfunction ¥,(r;) are appropriate for expanding the
transform ®(r;, 8, w) of ®(z, £). Thus let

‘I)(l‘t, 18’ w) = Z bn(wy ﬂ)‘lln(ti) (21)

By standard procedures it is then found that

—q

bu(w, B) = D

f Wl ()]t +is=dy. (22)

Inversion with respect to (8 gives

bu(w, 2) = —]Qf U, [r () Jemnleme =o'y (23)
2e0fn v —w

A further inversion with respect to w gives

2z ®
Zoq f \Iln(rt/)JO

ka2 —

ba(i, 2) =

Nt — (z — 2)2]dV (24)
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where ¢/’ and 2’ are functions of #. As a function of r and
t the scalar potential is given by

(r, 1) = 22 balt, V(). (25)
The two modal expansions (20) and (25) are the exten-
sion of the free space Liénard-Wiechert potentials, and
permit the calculation of the radiation from a single
arbitrarily moving charge in a uniform empty wave-
guide. The particle trajectory as described by r' (') must
of course, be known before the expansion coefhicients
can be evaluated.
The electromagnetic field is given by

1
H= —-VXA (26)
Mo
9A
E=—— — V3, 27)
at

In a gauge where V+A0 the scalar potential may be
eliminated by use of the Lorentz condition

1 9d

¢t o¢

VA= (28)

except for that part of ® which is independent of time.
For the time dependent electric field we now have

oA .
E= — ;Jrc?f vV - Adt. (29)

It is easily verified that the vector and scalar potentials
as given by (20) and (25), respectively, satisfy the
Lorentz condition.

I1I. ELecTtrIiC AND MAaGNETIC FIELDS

In this section we present the solutions for the
Fourier transforms of the electric and magnetic fields.
The field can be described in terms of E and A modes.
The H modes arise from the F, functions, while the G,
and ¥, give rise to £ modes. Since the F, are derived
from scalar functions ¢, that satisfy Neumann boundary
conditions the dominant mode, i.e., the mode with the
lowest cutoff frequency, is an H mode.

Using (26) and (27), we may obtain expressions for
H.(z, w) and E,(r, w). The transverse field components
H.(r, w) and E;(r, w) are then readily found from the
axial field components by conventional waveguide
theory. Thus we obtain for H modes the results

L,
H.(r,w) = an(wa %) : d’n(rt) (30a)
n 0
1 0H, 1 9w, 2)
Hyr,w) =—V, =2 ——— Vip,(r) (30b)
lnz 0z n ln,uo z

jkOZO Z fﬂ(w’ Z)

Et(ra w) =
Mo n ln

a. X Vip,(ry). (30¢)
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For the E modes we obtain
k.2 ag,.(w, 2
EZ(I', w) = Z . ’ l:knan(w; Z) - 8 (w lj} \Ifn(ft) (313)
n o JRoMoO 0z
Zo 1
E(I‘, w) = Z T
t ]kOIU«O n kn
c?an(w, 2)
. I:kﬂ 6 —I— ﬁnggn(w, Z) V;‘I/,L(l‘f) (31b)
1 1
Ht(ry U)) = Z o
Mo = kn
9gn (e, 2)
. [a— — knt(w, 2) |a, X Vil (r)). (31c)
Zz

The expansion coefficients f,.(w, 2), g.(w, 2), and ¢.(», 2)
are given by (17).

IV. SpEcTRAL DENSITY DISTRIBUTION OF RADIATION

The two most important characteristics of the radia-
tion from moving charges are the intensity and the spec-
tral distribution (power radiated as a function of w). The
amplitude spectral distribution may be found from the
expansions for A(r, w), ®(r, w) in terms of the expansion
coefficients a,{(w, 2), fu(w, 2), g.(w, 2), and b,(w, 2) as
given by (17) and (23). However, the closed form evalu-
ation of the expansion coefficients would, in general, be
difficult and approximations must often be resorted to.

The total energy radiated in one direction in the wave-
guide is given by

W, = f fEt(l‘, £ X H*(z, 1) «dSdt (32a)
—o ¥ S

where .S is a cross-sectional plane in the waveguide with
|2|3>|#| for all 2. Since the fields are real functions

= H,. In terms of the Fourier transforms of the fields
we obtain

1 0
W= f f f f Ed(r, @) X H*(r, \) - dSeioNtdepd\ds
v 8 -

= fw f E/(r,w) X H*(r, w) 'dSZﬁ . (32b)
oV 8 T
The quantity
W({f) = sz(l‘, w) X H*(r,w) *dS (33)
s

is the energy spectral density, since W{f)df is the energy
radiated in the frequency interval df. The total energy
radiated in one direction in the waveguide is given by

W, = f "W, (34)

Since the E and A modes are orthogonal, the energy
spectral densities may be computed separately for each



1965

mode.! Thus for H modes we obtain

koZ
W= =05 pufule, Do, 2. (35)
Mo n
The summation is taken over the propagating modes
only.
For the £ modes we find that

W =

Z

= 28] bane, D) £ 8,500, D[ (36)
kouo® 5

where the upper and lower signs refer to radiation in the

+2z directions and the summation is taken over the

propagating modes only.

It should be noted that a considerable amount of
energy may be radiated and stored within the wave-
guide, in the vicinity of the moving charge, in the form
of evanescent waveguide modes. This stored energy is
not evaluated by (32). That is, W, gives only the total
radiated energy propagating in the waveguide at large
values of \z—z'l.

Examination of (17) for the expansion coefficients
frlw, 2), g.(w, 2), and a,(w, 2) shows that they become
infinite at the cutoff frequencies where p, and 8, vanish,
i.e., when ko=1l, or k,. This is a resonance phenomena
that occurs when a mode ceases to propagate. The wave-
guide now behaves as a resonant cavity and the field is
a standing wave field along the transverse directions in
the waveguide. In a physical waveguide these infinities
do not occur because of the finite conductivity which
limits the Q, and hence the response, of the waveguide.
By a suitable perturbation analysis, modified expres-
sions for p, and B, may be derived so that attenuation
due to finite conductivity is accounted for [10]. It is
found that the perturbed propagation constants have
the form jp,+78,+06,, and jB.4+jan~+ax, and do not
vanish. However, at cutoff the energy spectral density
will be large since the attenuation constants é, and «,
are small when the only losses present are caused by the
finite conductivity of the waveguide. In the case of a
waveguide filled with plasma, the losses due to the
plasma would be much more significant. This point is
discussed again later on.

V. Periopic ParTICLE MOTION

The case of periodic particle motion is of considerable
interest since this includes cyclotron radiation from a
plasma. The special case of cvclotron radiation from a
particle executing circular motion in a transverse plane
in a circular guide has been treated by Parzen and
Nomicos [11]. This solution is included as a special
case in the general solution presented in Sections II to
IV. In this section general formulas will be derived for

1 An exception occurs for degenerate modes which may become
coupled together by the finite losses in the waveguide. In this case
new modes that are linear combinations of the old may be intro-~
duced so that the degeneracies are split and power orthogonality is
still maintained, (see Gustincic [10]).
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the amplitude spectral distribution and the average
power radiated per revolution of the charge.

Consider a periodic function k() with period =
=2w/w. k(') may be represented by a Fourier series

r(l'y = Z h(wn)efomt’

W, = MW, (37a)
where
1 4 )
h(wn) = —f h()e=iom'dy (37b)
T v
The Fourier transform of k(') is then given by
he) = Do h(wm)2m8(e — w). (38)

m=—c0

The power or average energy per period is given by

1 T
— f RO B*()dt!
T 0

I

1 T
~f D 2 hlwn) i (w,)eiten—ontgy
T 0 m s

2 Mleom) i (com) (39)
m
since the time average is zero unless w, = w,,.

If the periodic motion exists for a finite time T only,
say 11 to T, the time function is given by

ROH[U@ — Ty — Ul ~ Tyl (40)

where U(t—T.) is the unit step function and is equal to
zero for t < T, and equal to unity for > T';. The Fourier
transform of (40) may be evaluated by means of the
convolution theorem and is given by

o0

—1~ Rlo — NUN)dA

2 J

where U(\) is the Fourier transform of U@#—1Ty)
—U(t—T5). Evaluating U(\) and using (38) we obtain

U — Ty) — U@ — Ty)]
= 3 w,,) e~ I @—om) (Ti+Tp) /2 Sl_n(w;wm)_]ﬁ .
> Thiwm)e T

m=—c0

(41)

This result gives the well-known line broadening due to
the periodic motion existing for a finite time 7 only. If
T is greater than about 107, the broadened spectrum of
each harmonic does not overlap the adjacent harmonics
by any significant amount. In this case the average
energy per period is still given essentially by (39).
The energy spectral density may thus be expressed as

W) = 3 The sl —f).  (42)

m=—o0

The previously mentioned basic results from Fourier
transform theory may be applied directly to the expan-



418

sions for the potentials. The Fourier coefficients for the
mth harmonic are given by [see (17)]

7

Jweg 7 dz
e R GIR
0

28,1 dt

. e*.?‘ﬁnl —2’| e—fwmt'dt’

dr{
]#Oq f F(I"t,) _t

. e—Jpnl ez’ g—Jomt! Jy/

-2 fTG re ’dtt,
ZﬂnT 1] dt/

e~ Brle—2"| g—jomt’ gy’

anwom, 2) =

(43a)

f n (wm, Z)

(43b)

Znloom, 2) =

(43¢)

where 8, and p, are evaluated at w=w, =mw,.

If the periodic motion persists for an interval T long
compared with the period 7 the power P radiated is
given by the following:

For H modes
W, Zo
Pbgﬁ—zzmw%%mm<w

while for E modes

iz

,UO m=—c n

i knn(wm, 2) £ 7Bugn(wm, 2) l2 (45)

where ky, B2, and p, are evaluated for w=mw,=w,, for
the mth harmonic. The upper and lower signs in (45)
refer to the power radiated in the + 2z directions, and the
sum over # is taken over the propagating modes only.
Since all modes are cut off at w=0 the term m =0 in (44)
and (45) does not contribute to the radiated power.

Cyclotron Radiation in ¢ Rectangular Waveguide

As an example of the application of the formulas pre-
viously mentioned, consider the radiation from a charge
g undergoing circular motion in the transverse plane
inside a rectangular waveguide as in Fig. 1. Let the
position vector of the charge be

?
() = axo + ayyo + —

[

(as cos wt’ + ay sin wt')

where v/w, is the radius of the orbit. We will consider
the excitation of the dominant Hy, mode only.

b XX

Y

X
B a
Charge ¢ n a circular orbit in a transverse
plane in a rectangular waveguide.

Fig. 1.
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The required scalar function ¢ for the H;, mode is

2 T
— Ccos —
ab a

¢1 =

from which F;is found to be

Fy = /‘/——aysin—

From (43b) we obtain
pogi /2 f T
— — eg—ipilzl sin —
2?17' ab [} a

v
. (xo + —cos wct’> ve—domt’ cos wt'dt

We

fl(wm, Z) =

where p1= [(mw,/c)2—
known expansion of

(w/a)?]¥2 and 2’ = 0. Using a well-

. T ? ,
sin — | ®o -+ —cos wet’ ),

a W,

we obtain

Jthogy

fl(mwc, Z) 21)1

/_ e—ipilzl

X
|((—1)(m+1>/21,,/ sin—, modd

(46)

m even

t“l)mwm’
a
where J,.)  =dJ.(v)/dv, y=7v/w.a, and J, is the mth
order Bessel function.
The power radiated in one direction as an Hi; mode
at the mth harmonic is found from (44) to be

g ) sin? —, modd
Zog*me 2? a
=——— (Ja)?— (47)
46?1 b mXo
cos? y  meven
a

The —m harmonic will contribute a power equal to P
also. If we have a uniform distribution of particles over
the guide cross section and these radiate incoherently
the average power radiated per particle is

1 a b
= ’*—‘f f deodyo
ab J [}
Zoq*v*mw, < ) :r
= A .
/‘/<mwc>2 < T )2 [ wc(1>
4c o

c a

(48)

In a plasma an average over the velocity distribution
of the particles would also be taken.
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VI. RADIATION FROM ACCELERATED CHARGES IN
PrasMA-FILLED WAVEGUIDES

The preceding analysis has been based on the assump-
tion that a particle radiates into an empty waveguide.
The mode expansions used were, therefore, the ones
appropriate to an empty waveguide. In calculating the
radiation from a single particle in a waveguide filled
with plasma, the collective action of the plasma will
modify the radiation from a single particle. From a
macroscopic viewpoint the only change in the analysis
that is required is the use of modal expansions appropri-
ate to the plasma-filled waveguide. Since in a waveguide
filled with plasma (or nonuniformly filled) the equa-
tions satisfied by the potentials are much more involved
than those given by (2) and (3), it is often more expedi-
ent to work directly with the modal expansions for the
electric and magnetic fields.

Consider a waveguide completely or partially filled
with a plasma that is uniform in the axial z direction. A
general solution for the propagating modes in this type
of waveguide, taking into account an applied magnetic
field, nonuniform density over the cross section, tem-
perature effects, etc., has not yet been developed. Only
certain simplified situations are amenable to mathe-
matical analysis. These are based on the assumption of
a temperate plasma and uniform density over the cross
section of the plasma, e.g,. plasma slabs and columns.
With these assumptions the plasma may be character-
ized as an anisotropic (gytropic) medium with a tensor
dielectric constant. The density may vary over the cross
section and this may be taken into account by consider-
ing the tensor dielectric constant to be a function of the
transverse coordinates. The solutions for the fields for
this type of plasma model is summarized in considerable
detail by Bers [12].

For the purpose of the present section we shall as-
sume that it has been possible to find the complete set
of free modes describing the electric and magnetic fields
in the plasma-filled guide that is of interest. The modes
of the plasma-filled guide are then represented as fol-
lows:

En+(1', w) = [Et"+(rt7 OJ) + Ezn+(ft, w)]e_jﬂ"+z (4:93,)
Hn+(r7 w) = [th+<rt; w) + Hzn+(l't, (O)]C_j6”+z (4.9b)
E,~(r, ) = [Ew(rs, w) + E.i (s, w)]eB = (49c¢)

H,(r, ») = [Hu (11, 0) + Ho(ts, )62 (49d)

where the + and — signs refer to modes propagating
in the 42 and —z directions. If the waveguide has re-
flection symmetry about a z=constant plane, then
Ba~ =B+ and E,,~= —E,*, Hi;w = —Hu". Reflection
symmetry will occur if the applied static magnetic field
is along the waveguide axis 2. If the magnetic field is
applied in a direction perpendicular to 2, the waveguide
does not exhibit reflection symmetry and 8,~ does not
equal B, in general.

To have available an orthogonality property for the
modes in a waveguide characterized by a nonsymmetric
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dielectric tensor [k] it is necessary to introduce the
modes that are solutions for the same waveguide but
with media characterized by the transposed tensor
[%], [13], [14]. The modes obtained in the guide with
media described by [%] will be denoted by the same
symbols as in (49) with the addition of a tilde (~),
e.g., E.(r, w). Similarly, the propagation constants are
denoted by §,%. It may be shown that §,*=8.7, i.e.,
the eigenvalues for the guide with a transposed tensor
[«] are —B,* and —B.~. However, no simple relation-
ship exists between E,* and E,* [15]. The applicable
orthogonality relation is

f [Eut (1, ) X Hont (21, )
S
— Eupt(rs, ) X HuF(r, )] *adS =0 (50)

where the integration is over the guide cross section
and #n, m take on all possible values. In addition we
have

f(Etni x th—T- — Etn¥ X thi) 'azdS = i 1 <51)
8

provided the modes are suitably normalized. For de-
generate eigenvalues it is assumed that the correspond-
ing subset of degenerate modes are linearly combined
into a new subset such that (50) and (51) are still valid.

We will now consider the expansion of the propagat-
ing field radiated by an arbitrarily moving charged
particle in a waveguide. The particle is assumed to re-
main within a finite region existing from 2; to z: in the
waveguide as in Fig. 2. The Fourier transform of the
current corresponding to the moving charge is given

by (5) as

w gp (1
e = [ ’dt(,) ei0s[re — 20 (@)]als — ()]t

In the frequency domain the field radiated by this cur-
rent may be expanded in terms of the modes given by
(51). Thus let?

E‘*‘(r, w) = Z dnEn"'(I‘, w)

Fig. 2. A moving charged particle in a plasma filled waveguide.

2 If any dBa*/dw are negative, the group and phase velocities are
oppositely directed. In this case the mode carries power in the —z
direction and is included in the expansion for z <z and not for z2>2za.
Similar remarks apply for the 8.™.



420
H+(r, 0) = 2 a.H, (1, o)
E-= D b.E,~
' s < 21. (52b)
H- = Y bH~

The total field E, H radiated by J is a solution of

VX E = — jopH

V X H = jwe|x] " E+ J.
The free modes in the guide characterized by [%] are
solutions of

VX E = — jouH,*

V X H,= = jue[7] * E.*.
From these equations we obtain

v-[EX H* — EX X H| = JE*

If we integrate over the volume of the guide between
cross-sectional planes at z=g2;, 33, convert the integral
of the divergence to a surface integral, note that the inte-
gral over the perfectly conducting waveguide walls
vanishes, and finally, make use of (50) and (51) we ob-
tain

(53a)

,
b, = f J E V. (53b)
14

In expanded form the expansion coefficients a. are
given by

=] [ ot

az' (¢
+ E~zn_<rt, (.d) d<’ ):l e—fwt’e+.7'ﬁn+z5[t —t,(t,)]dt,dv
A
T~ dr{ L, dz

< e—dot’+ignt e gyt

(54)

where r./ and 2’ are functions of #’ and f,—=£.*. A sim-
ilar expression holds for b.(w). To find the fields as a
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function of time ¢ the inverse Fourier transform with
respect to w must be taken. The inversion is generally
difficult to carry out since the mode functions E,*(r, w)
are complicated functions of w, a situation which is
quite different from that encountered for radiation into
an empty waveguide. However, the frequency spectrum
of the radiation provides essentially all of the required
information. A further complication which arises in the
present case is that the modes are not orthogonal as re-
gards power flow for two reasons, namely because of
losses in the plasma and because of the anisotropic na-
ture of the plasma. However, if only one or two propa-
gating modes are excited the lack of power orthogonality
does not introduce significant computational difficulty.
In view of the overall complexity of the problem of
radiation into a plasma-filled waveguide the analysis
will not be pursued any further in the present paper.
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