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Plasma Radiation in Waveguides
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.4bstracf-In order to calculate the raditaion from plasmas placed
in waveguides it is necessary to know the field produced by arbi-

trarily moving charged particles in a waveguide. In this paper modal

expansions for the vector and scalar potentials due to arbitrarily
moving charged particles in a waveguide are derived and provide
the extension of the Li6nard-Wiechert potentials to a waveguide en-
vironment. In addition, for a plasma filled waveguide, a modal ex-

pansion is given of the electric field directly in terms of mode coupling
with the charge motion. Expressions for the spectral distribution of
the radiation are given, both in general and for cyclotron radiation.

Some specific results for the H,, mode excited in a rectangular guide

by cyclotron motion are also presented.

I. INTRODUCTION

T
HE PROPERTIES of the electromagnetic radia-

tion from a plasma are of great interest because

they provide information about the physical

process going on in a plasma and also because they are

an important loss mechanism in thermonuclear ma-

chines, [I], [3]. The two most important radiation

mechanisms are electron brernsstrahlung and cyclotron

radiation. The main features of this type of radiation

may be calculated by means of classical radiation

theory. A common procedure is to first calculate the

radiation from a single particle. The radiation from the

whole plasma is then obtained by averaging the radiated

power over the velocity distribution of the electrons,

using the assumption that each electron radiates inco-

herently with respect to all of the others [4].

The radiation from a single accelerated charge in free

space is readily found from the well-known Li6nard -

Wiechert potentials [5]. The radiaticm from a single

gyrating electron in a uniform static magnetic field may

be found by an application of these potentials [6], [7].

Although a number of analyses and calculations for

single particle radiation in free space have been carried

out, general results for arbitrarily moving charged

particles in a waveguide do not seem to have been de-

rived. The radiation from charged particles in a wave

guide is of considerable importance in connection with

the measurement of plasma radiation at microwave

frequencies. In the measurement of the plasma radiation

it is often convenient to place the plasma inside of a
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waveguide [8], [9]. It then becomes important to know

how various types of charge motion couple tc) or excite

propagating modes in the waveguide.

The first part of this paper is concerned with the

modal expansion of the vector and scalar potentials

arising from a single arbitrarily moving charge in a wave-

guide. The solution presented may be regarded as an

extension of the Li6nard-Wiechert potentials to a wave-

guide environment. Particular attention is focused on

the cyclotron radiation. Suitable formulas are obtained

for calculating the spectral density distribution of the

radiation when the particle undergoes periodic motion

for a finite time interval only.

The second part of the paper deals with the problem

of the radiation from a single particle in a wavegui de

partially filled with a plasma medium. A formal solution

is given for the modal expansion of the electric fieldl in

the partially filled guide In the present case the cc)m-

plexity of the equations satisfied by the potentials is

such that it is often more convenient to work directly

with the modal expansions of the electric and magnetic

fields.

II. POTENTIAL EXPANSIONS FOR A SINGLE

ARBITRARILY MOVING CHARGE

In this section the modal expansions for the vector

and scalar potentials arising from a single arbitrarily

moving charge will be derived. The charged particle’s

trajectory is assumed to be unaffected by its c)wn radiat-

ion field, an assumption that holds to a high degree of

approximation except for extremely high energy parti-

cles (in case of electrons radiation damping is negligible

for energies below one beV). It is further assumed that

the particle moves in an otherwise empty waveguide.

The waveguide has an arbitrary cross section, is in-

finitely long, and is perfectly conducting

Consider a particle with charge g and pc)sition vector

r’(t). The charge density p and current density J asso-

ciated with this moving charge may be expressed as

p(r, t) = @[r – r’(t)] (la)

( lb)

where ~ is the Dirac delta function. The vector potential

A and scalar potential @ are solutions ofOhio.
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1 d’~(r, t)
V2@(r, t) – -j

p(r, t)

&2 ‘– ~. “
(3)

Vector Potential Expansion

The aforementioned equations will be reduced to

standard eigenfunction-eigenvalue problems by taking

Fourier transforms with respect to time t and the wave-

guide axial coordinate z. Thus we let

sm

/l(r, w) = A(r, t)e–~w’di! (4a)
—cc

sm

A(rt,I%u) = A(r, co)e~~”dz (4b)
—m

where rf is the x and y part of r. Similar definitions are

used for the transforms of all other quantities. The

Fourier transform of (2) yields

(V$2 + k,2)A(r,, /?, ~)

= – pO.Krt, ,8, co)
m

Ss

m dr’(t’)
—— – I.Joq ~~[r$ – r,’(i)] . . .

—m -m

SW dr’(t’)
—
– — Poq — 6 [rt – r: (t’) ]e–j”~’+~~=’dt’

-co at’
(5)

where kC2= k#-/32 and k02 = w2/c2. The solution to (5)

will be expanded in terms of the eigenfunctions of the

equations

V,2A,(r,) + kc2Af(rJ = O (6a)

V,2Az(rt) + kc2AZ(rJ = O. (6b)

In a gauge where the divergence is nonzero the general

solution of (6a) consists of two classes of vector eigen-

functions, namely

1) Solenoidal modes with eigenvalues ln2 which will

be designated by the symbol F.. These satisfy the

relation Vt ● F. = O.

2) Irrotational modes with eigenvalues kn2 which will

be denoted by the symbol Gn. These satisfy the

condition V, )( G. = O.

For unique solutions, and keeping in mind that the

electromagnetic fields to be derived from A must satisfy

the boundary conditions

nXE=n-H=O on C

where C is the waveguide boundary, the following

boundary conditions are imposed:

V,* G.=nx F.=0 on C. (7)

Sol utions for the G. are readily found in terms of scalar

function !Vn (rj) as follows:

(8)

where

VL2*. + k%z~. = O (9a)

v,, = o on C. (9b)

These functions are readily shown to be orthogonal with

respect to integration over the guide cross section S and

are assumed to be normalized so that for nondegenerate

eigenvalues

s
G. ● G.dS =

s
3?nll?mdS = 6,. (lo)

s s

where 6~~ = O for n #m and equals unity for n = m.

Degenerate eigenfunctions may be combined in a linear

fashion so that (10) will be valid for these as well. It is

clear that the functions G. as given satisfy the condi-

tions VtX G. =0 and Vt ● G.= O on C,

Solution for the F. may be obtained in terms of scalar

functions @.(r,) as follows:

1 a= )( Vt&
F.=i Vtxa,~. =–

1%
(11)

n

where

Vt%+n + lna~n = o (12a)

dfpn
—=0 on C,
dn

(12b)

These functions are orthogonal and are also assumed

normalized so that

s
F. ● F.dS =

s
&$~dS = &~. (13)

s s

Clearly V, oF,, = O and n )(F. = O on C. It is assumed

that the guide cross section is simply connected so that

zero eigenvalues, i.e., k.= lx = O, are excluded.

The axial component A, of the vector potential may

be expanded in terms of the ~. functions which are also

the eigenfunctions of (6b).

In addition to the orthonormal properties (10) and

(13) the eigenfunction F. and Gm are also mutually

orthogonal, i.e.,

f
F. ● GmdS = O, all ?L and m. (14)

s

A suitable expansion for the vector potential

A(rt, /3, u) in (5) is

A(rt, /3, ~) = zf~F,, + z g.G~ + a. Z a.~. (15)
n n n
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wherejn, g%, and a. are expansion coefficients. When this This is a standard integral occurring k wavegu ide

expansion is used in (5) and use is made of the orthog- transient problems and has the value

onality properties of the functions F,,, Gn, and T., it

is readily found that 1 = .TO[kn<c’(t – t’)’ – (z – .2’) ’], t – t’ > I z – 2’/ /c

—Poq

s

w dz’(t’) = o, otherwise (l[lb)
— W. [r/ (t’) ]e–~’t’+~~”’dt’ (16a)

a“ = ~CZ – ~~z _~ dt’
where JO is the Bessel function of the first kind and order

Note that the an, f., and g. are functions of@ and w.

The transform relation for an, f., and g. in (16) may
where r~’ and z’ are functions of tf, Z.= ~pol{eo

be inverted with respect to P to give
f.(L Z) = ~fmF.(rt’) O~JO

Im
an(u, Z) = — san(m, ,8)e-~~=d/l

—cc

2X –m . [Jn<c’(t – t’)’ – (z – 2’)’](W

H–Poq m m dz’(t”)
— Wn[r/(t’)] ~-

27 –m –m

Zllq Ms f
g.(t, z) = ~ Gm(rt’) ● $ JO

—w

e–jb(z–.~)
. e–jbtp “ [kn<c’(1 – t’)’ – (z – z’)’]dt”.

/3n2 _ /32 ‘fidt’

The vector potential is given by

s

–Poqj m—_— Q.[r,’(t’)] # e-~~”l ‘-’’ le-~”’’dt’ (17a)
2/3. -w

A(r, t) = ~ j~(t, z) F~(rt) -1- x %(t, Z) G.(rt)

where ,R~2is defined by /3~2= koz — k~2. The inversion con-
n n

tour encircles the pole at @=/3. above the axis, and the + ~ agan(t, z) Wn(rJ.

pole at P = –B. below the axis. Similarly
n

where p~z = ko2 —l.’,

s–jPoq “
gn(q z) = — G.(r/) “~ e-$’~~l’-’’l-dt’’dt’. (17c)

2P. –m

In (17) r,’ and z’ are explicit functions of t’.The co-

efficients am(ti, z), f.(co, z), and g~(u, z) in (17) give the

spectral distribution of the n’th mode in the expansion

of the vector potential. Note in particular that when

koz = cJ/c2 is less than k.z or lnz the mode is cut off and

does not propagate.

In order to obtain the expansion of A(r, t) the ex-

pansion coefficients a~(u, Z), f,, (co, z), and g~(co, z) as

given by (17) must be inverted with respect to w.

This requires evaluation of an integral of the form

m

1=~ s27rj –.

[

]2-2’1
exp jti(f – t’) –j ~a’ – c2km2

c 1———d.. (18a)
4W2 – ~2&2

Scalar Potential Expansion

The scalar potential @(r, t) is a solution of (3) and

must satisfy the boundary condition @ = O cm C. The

eigenfunction Wn(rJ are appropriate for expanding the

transform ~(r~, ~, u) of @(r, t). Thus let

By standard procedures it is then found that

bn(q ,0 = s–9 m
Vn [r{ (t’)] e–~@t’+f~Z’dt’. (22)

Eo(k, 2 — kn2) -m

Inversion with respect to ~ gives

A further inversion with respect to w gives

f

C’zoq m
bn(f, Z) = — Vn(rt’)Jo

2 —m

c [kn<c’(t – t’)z – (Z – z’)i]dt’ (,24)
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where rt’ and z’ are functions of t’. As a function of r and

t the scalar potential is given by

@(r, t) = ~ bn(f, z) Tn(rJ. (25)
n

The two modal expansions (20) and (25) are the exten-

sion of the free space LiEinard-Wiechert potentials, and

permit the calculation of the radiation from a single

arbitrarily moving charge in a uniform empty wave-

guide. The particle trajectory as described by r’ (t’) must

of course, be known before the expansion coefficients

can be evaluated.

The electromagnetic field is given by

H=h)(A (26)

Vo

E=–*– V@.
l?t

(27)

In a gauge where V” A # O the scalar potential may be

eliminated by use of the Lorentz condition

except for that part of @ which is independent of time.

For the time dependent electric field we now have

t
E=–&c2

s
Vv” Adt.

dt
(29)

It is easily verified that the vector and scalar potentials

as given by (20) and (25), respectively, satisfy the

Lorentz condition.

II 1. ELECTRIC AND MAGNETIC FIELDS

In this section we present the solutions for the

Fourier transforms of the electric and magnetic fields.

The field can be described in terms of E and H modes.

The H modes arise from the F. functions, while the G.

and V. give rise to E modes. Since the F. are derived

from scalar functions @n that satisfy Neumann boundary

conditions the dominant mode, i.e., the mode with the

lowest cutoff frequency, is an H mode.

Using (26) and (27), we may obtain expressions for

H.(r, co) and E,(r, u). The transverse field components

H~(r, u) and Et(r, co) are then readily found from the

axial field components by conventional waveguide

theory. Thus we obtain for H modes the results

L
H.(r, co) = ~fn(~, z) — f$n(rt)

n /Jo
(30a)

For the E modes we obtain

knZO

[

dgn(co, z)
E,(r, O) = ~ ~ k,,a,,(c+ z) – 1——Wn(r,) (31a)

1, Jkopo dz

[

t)an(u, z)
. kn

1

+ b’n’gr’(%’) ‘tqr’(rf) (31b)
~~

r .C9gn(Lo, z) 1–knam(a, z) a. )( V,?Vn(rJ. (31C)
L dz J

The expansion coefficients ~,,(u, Z), g.(co, Z), ad U.(W, Z)

are given by (17).

IV. SPECTRAL DENSITY DISTRIBUTION OF RADIATION

The two most important characteristics of the radia-

tion from moving charges are the intensity and the spec-

tral distribution (power radiated as a function of a). The

amplitude spectral distribution may be found from the

expansions for A(r, u), @(r, co) in terms of the expansion

coefficients a~(u, z), ~,,(co, z), g~(u, z), and b~(u, z) as

given by (17) and (23). However, the closed form evalu-

ation of the expansion coefficients would, in general, be

difficult and approximations must often be resorted to.

The total energ~- radiated in one direction in the wave-

guide is given by

.
w, z

Ss
Et(r, $ X Ht*(r, t) “ dSdt (32a)

—. s

where .S is a cross-sectional plane in the waveguide with

] z] >>/ z’I for all z’. Since the fields are real functions

H,* = H,. In terms of the Fourier transforms of the fields

we obtain

‘“t‘+JSS.:SEt(r, co) )( H,*(r, X) odSe~@-~j ‘dtidldt

m
—— SsEt(r, m) )( H,*(r, ti) sdS’~ .

—m s 21r
(32b)

The quantity

~(f) = f Et(r, u) X Ht*(r, U) ● dS (33)
s

is the energy spectral density, since W@)dj is the energy

radiated in the frequency interval df. The total energy

radiated in one direction in the waveguide is given by

w, = [“w(f)df. (34)
J _w

Since the E and H modes are orthogonal, the energy

spectral densities may be computed separately for each
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mocfe.1 Thus for If modes we obtain

koZo

H02 x P.f,L(@, ~)j.*(% .2).w=-
n
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the amplitude spectral distribution and the average

power radiated per revolution of the charge.

(35)

The summation is taken over the propagating modes

only.

For the E modes we find that

where the upper and lower signs refer to radiation in the

+ z directions and the summation is taken over the

propagating modes only.

It should be noted that a considerable amount of

energy may be radiated and stored within the wave-

guide, in the vicinity of the moving chmge, in the form

of evanescent waveguide modes. This stored energy is

not evaluated by (32). That is, W~ gives only the total

radiated energy propagating in the waveguide at large

values of I z—z’l .

Examination of (17) for the expansion coefficients

.f~(o, Z), g~(ti, Z), and a~(u, Z) shows tlhat they become

infinite at the cutoff frequencies where ,Pn and D. vanish,

i.e., when k.= 1. or kn. This is a resonance phenomena

that occurs when a mode ceases to propztgate. The wave-

guide now behaves as a resonant cavity and the field is

a standing wave field along the transverse directions in

the waveguide. In a physical waveguicle these infinities

do not occur because of the finite conductivity which

limits the Q, and hence the response, of the waveguide.

By a suitable perturbation analysis, modified expres-

sions for P. and ~n may be derived so that attenuation

due to finite conductivity is accounted for [10]. It is

found that the perturbed propagation constants have

the form iP~+~6n+6~, and .i~~+ja~+ an, and do not

vanish. However, at cutoff the energy spectral density

will be large since the attenuation constants 8. and an

are small when the only losses present are caused by the

finite conductivity of the waveguide. In the case of a

waveguide filled with plasma, the lclsses due to the

plasma would be much more significant. This point is

discussed again later on.

V. PERIODIC PARTICLE MC)TION

The case of periodic particle motion ‘is of considerable

interest since this includes cyclotron radiation from a

plasma. The special case of cyclotron radiation from a

particle executing circular motion in a transverse plane

in a circular guide has been treated by Parzen and

lNomicos [1 1 ]. This solution is included as a special

case in the general solution presented in Sections II to

I\~. In this section general formulas will be derived for

1.ln exception occurs for degenerate modes which may become
coupled together by the finite losses in the waveguide. In this case
new modes that are linear combinations of the old may be intro-
duced so that the degeneracies are split and pc)wer orthogonality is
still maintained, (see Gustincic [10]).

Consider a periodic function

= 27r/w.. Iz(t’) may be represented

.

In=-m

where

1 n?-

lz (t’) with periocl T

by a Fourier serie~;

WWL= ‘i?Zwc (3;la)

/t(oJ.) = ~ Jfi(/) ~–j~mtf~~~.
70

The Fourier transform of h (t’) is then given

I?(OJ) = ~ k(c%J27r8(6J – mm).
m=—~

(3i’b)

by

(38)

The power or average energy per period is given by

1’
. sk(t)k*(t)dt’To

= ~ l’z(LL%Jl’z*(wJ (39)
m

since the tnne average 1s zero unless u, = w.,.

If the periodic motion exists for a finite time T only,

say T1 to Tz, the time function is given by

k(t) [U(t – T,) – u(t – 1-2)] (’10)

where U(t — T,) is the unit step function and is equall to

zero for t < T, and equal to unity for t ~ Ti. The Fourier

transform of (40) may be evaluated by means of the

convolution theorem and is given by

where U(A) is the Fourier transform of U(t— ;rJ

– .U(t– TJ. Evaluating U(A) and using (38) we obtain

3h(t’)[U(t– TJ – U(t – T,)]

This result gives the well-known line broaclen ing due to

the periodic motion existing for a finite time T only. If

T is greater than about 10~, the broadened spectrum of

each harmonic does not overlap the adjacent harmonics

by any significant amount. In this case the average

energy per period is still given essentially by (39).

The energy spectral density may thus be expressed as

w(f) = 5 n’(%) k*(w)6(j – j.,) . (42)
WL=—m

The previously mentioned basic results from Fourier

transform theory may be applied directly to the expan-
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sions for the potentials. The Fourier coefficients

vzth harmonic are given by [see (17)]

s.iPoq ‘
G(% z) = – — G.(r/)

2&T o

where fl~ and I% are evaluated at w = u. = mu,.

If the periodic motion persists for an interval

MICROWAVE THEORY AND TECHNIQUES July

for the The required scalar function @l for the IIlo mode is

(43a) from which F1 is found to be

v’T 7’W
F1 = —aUsin —,

ab a

(43b)
From (43b) we obtain

compared with the period r the power P radiated is

given by the following:

For .H modes

( ). xo + ~ cos o+t’ ve–j”m$’ cos w.tfdtt
T long UC

w, Z(I *
P = y = — ~ ~ pnkofn(kh, z)fn*(%, z) (44)

IJ02 m-cc n

while for E modes

where ko, fL, and $. are evaluated for u = mu. = w~ for

the nzth harmonic. The upper and lower signs in (45)

refer to the power radiated in the ~ z directions, and the

sum over n is taken over the propagating modes only.

Since all modes are cut off at u = O the term m = O in (44)

and (45) does not contribute to the radiated power.

Cyclotron Radiation in a Rectangular Waveguide

As an example of the application of the formulas pre-

viously mentioned, consider the radiation from a charge

q undergoing circular motion in the transverse plane

inside a rectangular waveguide as in Fig. 1. Let the

position vector of the charge be

r’(t’) = a.to + auyo + : (ac cos ~J’ + au sin u.t’)
UC

where V/UC is the radius of the orbit. We will consider

the excitation of the dominant IIlo mode only.

Y

1+----- ”---4
Fig. 1. Charge g n a circular orbit in a transverse

plane in a rectangular waveguide.

where @l= [(mwJc)2 — (z-/a) 2]1/2 and z’= O. Using a well-

known expansion of

( v )sin 1 *O + — cos at’ ,
a Wc

we obtain

((-1)~+1)/2Jm,sin~,~odd
a

“1 1(46)

(– 1)~/2Jm’ Cos ~ , m even
a

where J~’ = dJ~(y)/dV, v = m/wCa, and J~ is the mth

order Bessel function.

The power radiated in one direction as an H1o mode

at the mth harmonic is found from (44) to be

~1
7rxo

sin2 ———>
ZOq2mu,v2

m odd

P=
4Gp1 @~’)2 : a

. (47)
7rxil

COST— ) m even
a J

The –m harmonic will contribute a power equal to P

also. If we have a uniform distribution of particles over

the guide cross section and these radiate incoherently

the average power radiated per particle is

a b

Pa=;
Ss

Pdxodyo
00

In a plasma an average over the velocity distribution

of the particles would also be taken.
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VI. RADIATION FROM ACCELERATEID CHARGES IN

PLASMA-FILLED WAVEGU.IDES

The preceding analysis has been based on the assump-

tion that a particle radiates into an elmpty waveguide.

The mode expansions used were, therefore, the ones

appropriate to an empty waveguide. In calculating the

radiation from a single particle in a waveguide filled

with plasma, the collective action of the plasma will

modify the radiation from a single particle. From a

macroscopic viewpoint the only change in the analysis

that is required is the use of modal expansions appropri-

ate to the plasma-filled waveguide. Since in a waveguide

filled with plasma (or nonuniformly filled) the equa-

tions satisfied by the potentials are much more involved

than those given by (2) and (3), it is often more expedi-

ent to work directly with the modal expansions for the

electric and magnetic fields.

Consider a waveguide completely or partially filled

with a plasma that is uniform in the axial z direction. A

general solution for the propagating modes in this type

of waveguide, taking into account an applied magnetic

field, nonuniform density over the cross section, tem-

perature effects, etc., has not yet been developed. Only

certain simplified situations are amenable to mathe-

matical analysis. These are based on the assumption of

a temperate plasma and uniform density over the cross

section of the plasma, e.g,. plasma slabs and columns.

With these assumptions the plasma may be character-

ized as an anisotropic (gytropic) medium with a tensor

dielectric constant. The density may vary over the cross

section and this may be taken into account by consider-

ing the tensor dielectric constant to be a function of the

transverse coordinates. The solutions for the fields for

this type of plasma model is summarized in considerable

detail by Bers [12].

For the purpose of the present section we shall as-

sume that it has been possible to find the complete set

of free modes describing the electric and magnetic fields

in the plasma-filled guide that is of interest. The modes

of the plasma-filled guide are then represented as fol-

lows :

En+(r, a) = [Et.+(rt, co) + E.. +(,.,, ~)]e-i&?+.

Hn+(r, ~) = [Htm+(rt, u) + Hz,, +(r,, ~)]e-i%+.

E.–(r, a) = [Etn–(rt, w) + E~~–(rt, w) ]ej8~-Z

H.–(r, w) = [Ht~–(ri, o) i- Hg~–(rt, OJ)]eid”-’

(49a)

(49b)

(49C)

(49d)

where the + and — signs refer to m~odes propagating

in the +Z and — z directions. If the waveguide has re-

flection symmetry about a z = constant plane, then

P.- = B%+ and l?,. -= –E,.+, Htn- z -- H,.+. Reflection

symmetry will occur if the applied static magnetic field

is along the waveguide axis z. If the magnetic field is

applied in a direction perpendicular to z, the waveguide

does not exhibit reflection symmetry and 9.– does not

equal ~.+ in general.

To have available an orthogonality property for the

modes in a waveguide characterized by a nonsymmetric

dielectric tensor [K] it is necessary to introduce the

modes that are solutions for the same waveguide but

with media characterized by the transposed tenlsor

[z], [13], [14]. The modes obtained in the guide with

media described by [z] will be denoted by the same

symbols as in (49) with the addition of a tilde (-w),

e.g., ~fi(r, co). Similarly, the propagation constants are

denoted by B.*. It may be shown that ~fm* =fl.$, i.e.,

the eigenvalues for the guide with a transposed tensor

[K] are –~n+ and —~m–. However, no simple relation-

ship exists between En+ and ~m* [15]. The applicable

orthogonality relation is

— i,~+(r,, co) x Ht.*(rt, CO)]● ads = o (50)

where the integration is over the guide cross section

and n, m take on all possible values. In addition we

have

provided the modes are suitably normalized. For de-

generate eigenvalues it is assumed that the correspcmd-

ing subset of degenerate modes are linearly combined

into a new subset such that (50) and (51) are still valid.

We will now consider the expansion of the propagat-

ing field radiated by an arbitrarily movin,g charged

particle in a waveguide. The particle is assumed tc) re-

main within a finite region existing from Z1 t.o 22 in the

waveguide as in Fig. 2. The Fourier transform of the

current corresponding to the moving charge is given

by (5) as

In the frequency domain the field radiated by this cur-

rent may be expanded in terms of the modes given by

(51). Thus let’

‘1 Z2

Fig. 2. A mo~ing charged particle in a plasma filled waveguide.

Z If any dB*+/d~ are negative, the group and phase velocities are
oppositely dlr:c:ed. In this case the mode carries power in th (; —z
direction and IS included m the expansion for z <% and not for #2ZZ.
Similar remarks apply for the B.–.
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H+(r, a) =

& ~

~- .

function of time t the inverse Fourier transform with

respect to w must be taken. The inversion is generally

~ h. E.- difficult to carry out since the mode functions ~~* (r, co)

The total field E, H radiated

z <21. (52b)

)y J is a solution of

VXE= –jupoH

v)(H=jco~o[K]o E+J.

The free modes in the guide characterized by [z] are

solutions of

v )( E.* = – jq.loi%*

v )( H.+ =jmo[z] “fin+.

From these equations we obtain

VOIEXtin*-~%*XH]=J*~Z*.

If we integrate over the volume of the guide between

cross-sectional planes at z = z1, zZ, convert the integral

of the divergence to a surface integral, note that the inte-

gral over the perfectly conducting waveguide walls

vanishes, and finally, make use of (50) and (51) we ob-

tain

s
a. = J* ~.-dl’ (53a)

v

sb. = J* ~n+dV.
v

(53b)

In expanded form the expansion coefficients a-. are

given by

. ~—jmt‘+ifl. +.’dtf (54)

where rt! and Z’ are functions of t’ and ~m– = 13~~. A sim-

ilar expression holds for b~(co). To find the fields as a

are complicated functions of co, a situation which is

quite different from that encountered for radiation into

an empty waveguide. However, the frequency spectrum

of the radiation provides essentially all of the required

information. A further complication which arises in the

present case is that the modes are not orthogonal as re-

gards power flow for two reasons, namely because of

losses in the plasma and because of the anisotropic na-

ture of the plasma. However, if only one or two propa-

gating modes are excited the lack of power orthogonality

does not introduce significant computational difficulty.

In view of the overall complexity of the problem of

radiation into a plasma-filled waveguide the analysis

will not be pursued any further in the present paper.
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